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The Landscape
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 Persistence
 Saving your (persistent) application data
 Mapping your component/object model to the 

persistence store (typically referred to as O/R 
mapping)

 Data consistency and concurrent access
 Transactional semantics
 Managing your persistent state is non-trivial 

and complex
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 Entity EJB 
 Bean-Managed Persistence (BMP)
 Container-Managed Persistence (CMP)

 JDBC
 Relational databases (RDBMS)
 Object databases (ODBMS)

 Java Data Objects (JDO)
 Hibernate
 ObjectRelationalBridge (OJB)
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Functional Approach

 Better suited for coarse-grained 
persistent business objects
 Class author or tool implement a 

standard set of functions to persistent-
enable their domain classes
 Two models programmatically reflect 

the same domain
 Ex: Entity Bean persistence 

framework
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Orthogonal Language Transparent Approach

 Suited for both coarse-grained and fine-
grained persistent domain objects 
 Persistent objects in the code are just like 

any other objects
 Application design decoupled and 

independent of the underlying persistence 
infrastructure
 Ex: JDO persistence framework, Hibernate
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 YES!
 Transparent persistence with Java Data 

Objects (JDO), Hibernate, and others 
are not replacements for Enterprise 
JavaBeans (EJB) architecture  
 They complement it!
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Container-Managed 
Persistence 

(CMP)
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 Rich modeling capability with relationships

 Referential integrity, Cardinality, Cascading 
delete

 Container manages the relationships not you!

 Freedom from maintaining interactions with the 
data store

 EJB Query Language (EJB-QL)

 Truly portable code!
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1) Bean provider manages State and Data consistency

2) Bean provider handles relationships and OR Mapping

1) Container manages State and Data consistency

2) Container/PM provides concurrency, relationships and OR Mapping
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 O/R mapping
 Managing the persistence state 

 Relationships management

 Concrete bean sub-class generation 

 QoS (e.g., Data caching) 
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 Basic “wrapper” code generation

 Making the info from ejb-jar.xml 
available to the PM during deployment

 Life cycle management
 Making the Transaction Manager 

available to the PM
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 Use CMP 2.0 whenever possible! 

 Performs better than BMP

 Improved portability, performance over CMP 1.0

 Easier to develop and deploy than BMP

 Produces portable code over multiple databases

 If you have to build BMP entity bean, subclass 
CMP 2.0 bean
 Easy migration to CMP later on
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Java Data Objects 
(JDO)
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 Standard for generic/transparent Java object 
persistence
 Provides developers with a Java-centric and 

object view of persistence and data store access

 Designed to allow pluggable vendor “drivers” for 
accessing any database/data store

 Connector Architecture used to specify the 
contract between JDO Vendor and Application 
Server for instance, connection, and transaction 
management
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Application

Transient Objects

JDO Objects
(implement 

Persistence Capable)

Query

Transaction

Class Meta Data

Data 
Store

Business Objects

Persistence Manager

describes

describes

 Persistence By Reachability
 Any object loaded directly or indirectly (by reference) 

from a JDO loaded object is automatically persisted     if 
the enclosing transaction commits
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 Lifetime of PM, pooling, and caching limited to 
transaction scope

J2EE-based, multi-tier
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 Most JDO vendors use the bytecode modification 
for the following reasons:
 Avoid potentially messy source code modification

 Allow persistence to be hidden from the programmer. 
 The programmer is database unaware

Byte Code Enhancement
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 Use PersistenceManagerFactory to get 
a PersistenceManager
 PersistenceManager embodies a database 

connection

 Use a PersistenceManager to create a 
Transaction or a Query
 Use a Transaction to control 

transaction boundaries

 Use a Query to find objects
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 Enhanced classes implicitly implement 
PersistenceCapable
 PersistenceCapable classes can 

implement InstanceCallbacks
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Public static void main(String[] args) {
PersistenceManagerFactory pmf =

JDOHelper.getPersistenceManagerFactory 
(System.getProperties());
PersistenceManager pm =  

pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();
tx.begin();
   Author author = new Author(“Mr. Author");
   Book book = new Book("Java Book", 

"0-11-570731-7");
   author.addBook(book);

// do some other work with books, publishers etc
   pm.makePersistent(author);

tx.commit();
pm.close();
}
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Hibernate
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 Persistence for JavaBeans

 Explicit Save/Update for each object
 Changed objects must be enlisted for update 

so that the next transaction commit will 
effectuate the changes in the data store

 Support for very fine-grained, richly typed 
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)
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 Persistence for POJOs (JavaBeans)

 Flexible and intutive mapping

 Explicit Save/Update for each object
 Changed objects must be enlisted for update 

so that the next transaction commit will 
effectuate the changes in the data store

 Support for very fine-grained, richly typed 
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)
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 Persistence for POJOs (JavaBeans)

 Flexible and intutive mapping

 Explicit Save/Update for each object
 Changed objects must be enlisted for update 

so that the next transaction commit will 
effectuate the changes in the data store

 Support for very fine-grained, richly typed 
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)
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 For applications using servlets + session 
beans
 Row “select” not needed for updating

 DTO's not necessary

 You may serialize objects to the web tier, 
then serialize them back to the EJB tier in 
the next request

 Hibernate lets you selectively reassociate a 
subgraph
 Performance advantage
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Complementing 
J2EE and 
JDO/Hibernate
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JDO In Transaction-Managed Environment

 Because JDO is only concerned with 
persistence, it is best used within protective 
boundaries of a J2EE application server

JDO Access Scheme

// factory via JNDI
PersistenceManagerFactory pmf = ...;

// Create a session-scoped persistence manager
PersistenceManager sess = 

pmf.getPersistenceManager();

// Get object
Person p = (Person) 

sess.getObjectById(new PersonPK(“100170”));

// Set/Get properties as for any POJO
p.setName(“Peter Jensen”);
int year = p.getYearOfBirth();
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Hibernate In Transaction-Managed 
Environment

Hibernate Access Scheme

// factory via JNDI
SessionFactory sessionFactory = ...;

// Create a session-scoped persistence manager
Session sess = 

sessionFactory.getSession();

// Get object
Person p = (Person) 

sess.loadClass(Person.class, “100170”);

// Set/Get properties as for any POJO
p.setName(“Peter Jensen”);
int year = p.getYearOfBirth();

sess.saveOrUpdate(p);
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 JDO works well with Session and     
Message-Driven Beans
 Works out-of-the-box
 Bean explicitly controls transactions or uses 

CMT

 JDO can be used with BMP Entity 
Beans

 JDO can be used by containers for CMP
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 Usage with Session, Message-Driven Bean
 Fascade pattern 

 Bean methods represent coarse-grained 
business processes
 Business logic uses JDO to represent the data 

model

 Bean programming can still leverage 
standard OO concepts
 JDO object can be used in Data Transfer 

Object Pattern
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public class ExampleCMTBeanWithJDO implements SessionBean{      
private SessionContext ejbCtx;                                
private PersistenceManagerFactory jdoPMF;

public void setSessionContext(SessionContext sessionCtx) throws 
EJBException{                                            
ejbCtx = sessionCtx;                                          
InitialContext ctx = new InitialContext();                    
Object o = ctx.lookup("java:comp/env/jdo/bookstorePMF");      
jdoPMF = (PersistenceManagerFactory)                           
PortableRemoteObject.narrow                                     
                (o,PersistenceManagerFactory.class);...}

  /* business method */ 

  public void doSomething(int arg){                             
  PersistenceManager pm = jdoPMF.getPersistenceManager();

  // Do something using JDO now...

pm.close();

}                                                             }
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 JDO can be used as a BMP strategy
 Sun Java System App Server uses JDO for CMP

 Leverages J2CA

 Layered Architecture
 Use JDO objects directly 

 Use same objects within EJB to take advantage of 
other J2EE container services

 JDO/BMP approach – cost effective

 Entity Bean and JDO usage similiarities
 Not distributed, non-remote, not access-controlled
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 Entity Beans Wrapping JDO classes
 Use a BMP delegate strategy
 Allows the JDO classes to be remotely 

accessible directly, rather than through a 
session facade
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 Java Connector Architecture
 Mandated as plug-in for non-JDBC data access

 Common Client Interface
 Standard APIs for obtaining a connection
 javax.resource.cci.ConnectionFactory

 javax.resource.cci.Connection

 PersistenceManagerFactory -> 
ConnectionFactory

 PersistenceManager -> Connection

 JDO PMF is bound to JNDI by a J2CA 
adaptor
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EJB ContainerEJB Container

JDO ImplementationJDO Implementation

Web ContainerWeb Container

JDO ImplementationJDO Implementation
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 Techniques for concurrency modifications
 JDO – Store PersistenceManager in HTTP Session

 Hibernate – Store Data Objects in HTTP Session

…For Better Performance
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public class JDOServlet extends HttpServlet{              

PersistenceManagerFactory pmf;                            
public void init(ServletConfig config);                   
InitialContext ctx = new InitialContext();                
pmf = (PersistenceManagerFactory)                         
ctx.lookup(“java:comp/env/PMF”);}

protected void service(HttpServletRequest request,         
                          HttpServletResponse response){

String authorname = request.getParameter("authorname");
PersistenceManager pm = pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();            
tx.begin();

Author author = new Author("authorname");pm.makePersistent
(author);

tx.commit();

}
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Choosing Your 
Strategy
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 Moderate development cycle
 No intermediate step needed

 Dependence on SQL to handle 
computational logic
 Ideal for RDBMS-centric apps
 Harness RDBMS computational power
 Tight coupling – domain object models 

and database schema

Application Suitability
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 Lack of client caching
 Moderately portable code

Application Suitability
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  Uses SQL
 Refers directly to the data store schema

 Query sent directly to the data store as 
String arguments
 No statement error detection at 

compile time
 Excel at Aggregational Queries 

 Computational load on the RDBMS

Object Query 
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 Driver explicitly fetches records from 
the data source for Navigational 
queries 
 Ad-hoc results possible 
 Query results returned as ResultSet
 High overhead for marshalling query 

results

Object Query 



Push your development further
Sun™
Tech
DaysCMP

 Application server has rich feature set
 Load balancing, transactions, security, 

messaging, etc

 High performance optimization

 Fetch-on-demand
 Highly portable code
 BMP less so

 Development can be non-linear

Application Suitability
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 Declarative query using abstract finder 
methods in bean interface
 Deployment descriptor defines how 

the finder is realized in EJB-QL
 Compiler translates EJB-QL query to 

syntax of target data store

 Compiler inserts execution statements 
into generated concrete bean class

Object Query
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 Ideal for Navigation Query
 Driver implicitly fetches instances from the data 

source

 Domain object model decoupled from 
schema and data store
 Cannot assume specific query capabilities of the 

data store

 Ad-hoc queries not possible

Object Query
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 Query results returned as domain objects
 Low overhead for marshalling query results

 Provides advanced declarative transaction 
semantics
 EJB-QL Definition in Server-side 

descriptors
 No Access to Statement Generation

 Simplicity in Database Mapping 

Object Query
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 Application code relatively simple
 JDO driver handles automatic persistence, 

mapping, and identification in transactions

 Ideal for object-centric applications
 Ideal when data store is primarily 

navigational
 Object methods handle bulk of data store 

computational logic

Application Suitability
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 Ideal when working with multiple types 
of data stores

 Ideal for navigation access over a graph 
of interconnected objects
 Persistence-by-reachability

 Moderate performance optimization
 Client cache managed by JDO 

implementation

 Highly portable code

Application Suitability



Push your development further
Sun™
Tech
DaysJDO

 Programmatic approach using Java-like 
syntax
 Query represented as instance of 

javax.jdo.Query object
 Attributes refer only to elements in the 

Java application space
 JDO driver translates query into syntax 

of target data store when execute( ) 
method invoked on Query object

Object Query
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 JDO-QL used
 Computational load on the client
 Ideal for Navigation Query
 Driver implicitly fetches instances from 

the data source

 Domain object model decoupled from 
schema and data store
 Cannot assume specific query capabilities 

of the data store

Object Query
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 Ad-hoc Queries possible
 Query results returned as domain 

objects
 Low overhead for marshalling query 

results

 Persistence-by-reachability enable 
strong transaction state management

Object Query
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EJB 3.0
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 Simplify Programming Model
 Reduce number of programming artifacts
 POJO/JavaBeans like other EJB 3.0 beans
 Eliminate deployment descriptor from 

developer’s view
 Make instances usable outside the container
 Facilitate testability
 Remove need for data transfer objects 

(DTOs)
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 Support for lightweight domain modeling
 Inheritance and polymorphism
 Object/Relational mapping metadata

 More complete query capabilities
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 Enables light-weight implementation
 Entities typically accessed through local interfaces
 Transactions typically started in session bean or Web 

tier
 Methods are often “unchecked”

 Provides a standardized SQL-like query language 
integrated with entity model EJB-QL

 Usage has supplanted that of BMP
 Held back by need for more EJB-QL
 High-quality, high-performance implementations well-

established in industry
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 Lack of sufficient modeling capabilities
 No polymorphism
 No support for implementation inheritance
 Lacks O/R mapping specification

 Query language still missing some important 
features
 Projection, Subqueries, Outer joins, Dynamic 

queries
 Provision for direct SQL queries
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 Concrete classes (no longer abstract)
 No required bean interfaces
 Support new()

 Usable outside the EJB container
 As detached entities
 For testing of business logic

 getter/setter methods 
 Can contain logic (for validation, transformation, 

etc.)
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 Collection interfaces for relationships
 Entities are not remotable
 No required callback interfaces
 Many points of control 
 Over lifecycle
 CASCADE capabilities (CREATE, REMOVE, ALL, ...)

 Scope of persistence context
 Fetch/faulting behavior
 FETCH JOINS, O/R mapping metadata

 Isolation semantics
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EJB 3.0 Entity Bean Example
 @Entity public class Customer { 

private Long id;
private String name;
private Address address;
private HashSet orders = new HashSet();

@Id(generate=AUTO) public Long getID() {
  return id;
}

   
   protected void setID (Long id) {
     this.id = id;

}

@OneToMany(cascade=ALL) 
public Set<Order> getOrders() {
  return orders;
}

public void setOrders(Set<Order> orders) {
  this.orders = orders;
}}
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 @Stateless public class OrderEntryBean { 
private EntityManager em;

@Inject void setEntityManager(EntityManager em){ 
  this.em = em;
} 

public void enterOrder(int custID, Order newOrder){
  Customer c = em.find(“Customer”, custID);
  c.getOrders().add(newOrder);
  newOrder.setCustomer(c);
  }

// other business methods
}
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 Bulk update and delete operations

 Projection list (SELECT clause)

 Group by, Having

 Subqueries (correlated and not)

 Additional SQL functions
 UPPER, LOWER, TRIM, CURRENT_DATE, ...

 Dynamic queries

 Polymorphic queries

 Criteria queries probably in 3.1
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Access Updates

 Outer Fetch Joins
 Very useful for explicitly controlling data prefetch

 Minimize database roundtrips

 Programmer knows data access patterns

 Relationship fetching
 FetchType, EAGER, LAZY

 Optimistic locking support
 @Version, @Timestamp
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@Entity 
@Table(name=”CUST”)
@Inheritance(strategy=SINGLE_TABLE,
             discriminatorType=STRING,
             discriminatorValue=”CUST”)
public class Customer {...}

@Entity
@Inheritance(discriminatorValue=”VCUST”)
public class ValuedCustomer extends Customer{...} 
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 Persistence context typically corresponds to 
a single JTA transaction
 Extended persistence context can span 

multiple JTA transactions 
 Important use case: “Application transactions”
 Preserves state across longer-lived client 

interactions (especially from Web tier)
 Stateful session beans a natural fit for 

maintaining extended persistence context
 Optimistic transactions
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 J2EE
 http://java.sun.com/j2ee/index.jsp

 JDO
 http://access1.sun.com/jdo/
 http://www.jdocentral.com

 Hibernate
 http://www.hibernate.org

 OJB
 http://db.apache.org/ojb/
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Demo
 CMP Development on

Sun Java Studio 
Enterprise   


