J2EE Persistence Options:
JDO, Hibernate and EJB 3.0

Sridhar Reddy
Sridhar.Reddy@sun.com

Sun™ Tech Days

The Landscape

Persistence In A Nut Shell

m Persistence

m Saving your (persistent) application ¢

ata

= Mapping your component/object moc

el to the

persistence store (typically referred to as O/R

mapping)

m Data consistency and concurrent access

®m Transactional semantics

®m Managing your persistent state 1s non-trivial

and complex

Object-Relational Impedance Mismatch

The Logical World

Qid

The Physical World

PK | Qid

Firstdame
LasiName
Customsribr

Ciuantity
POMNumber
Shippinglnstructions

PK

Qid

CirderDateTm

Linelteam

Dlescription
Availability
LeadTimeMin
LeadTimeMax

CustomerFrofile

PK [Qid

PK

Qid

Type
ShowRecentOrder
YViewSpecials

Ciuantity
Crderl) OM
Crderid
ltemid

Persistence Techniques
= Entity EJB

m Bean-Managed Persistence (BMP)
m Container-Managed Persistence (CMP)

m J]DBC

m Relational databases (RDBMS)
m Object databases (ODBMS)

m Java Data Objects (JDO)
m Hibernate
m ObjectRelationalBridge (OJB)

Approaches to Object Persistence

Functional Approach
m Better suited for coarse-grained
persistent business objects

m Class author or tool implement a
standard set of functions to persistent-
enable their domain classes

®= Two models programmatically reflect
the same domain

m Ex: Entity Bean persistence
framework

Approaches to Object Persistence

Orthogonal Language Transparent Approach

m Suited for both coarse-grained and fine-
grained persistent domain objects

m Persistent objects in the code are just like
any other objects

m Application design decoupled and
independent of the underlying persistence
infrastructure

m Ex: JDO persistence framework, Hibernate

Can The Two Co-exist?

® YES!

® Transparent persistence with Java Data
Objects (JDO), Hibernate, and others

are not replacements for Enterprise
JavaBeans (EJB) architecture

m They complement 1t!

Container-Managed

Persistence
(CMP)

CMP 2.0

® Rich modeling capability with relationships

m Referential integrity, Cardinality, Cascading
delete

m Container manages the relationships not you!

® Freedom from maintaining interactions with the
data store

m EJB Query Language (EJB-QL)
® Truly portable code!

BMP vs. CMP @Sun

microsystems

BMP Joec . JDBC SQL { Bean
Bean SQLJ Driver State

EJB Container Database

1) Bean provider manages State and Data consistency
2) Bean provider handles relationships and OR Mapping

CMP JDBC JDBC SQL} Bean
Bean sQLJ Driver State
Persistence Database
EJB Container Manager

1) Container manages State and Data consistency
2) Container/PM provides concurrency, relationships and OR Mapping

Role of the Persistence Mgr & Sun

= O/R mapping

m Managing the persistence state

m Relationships management

m Concrete bean sub-class generation

® QoS (e.g., Data caching)

Roles of the Container

m Basic “wrapper’” code generation

m Making the info from ejb-jar.xml
available to the PM during deployment

m Life cycle management

m Making the Transaction Manager
available to the PM

CMP 2.0

m Use CMP 2.0 whenever possible!

m Performs better than BMP

® Improved portability, performance over CMP 1.0
m Easier to develop and deploy than BMP

® Produces portable code over multiple databases

= If you have to build BMP entity bean, subclass
CMP 2.0 bean

m Easy migration to CMP later on

Java Data Objects
(JDO)

JDO

m Standard for generic/transparent Java object
persistence

m Provides developers with a Java-centric and
object view of persistence and data store access

m Designed to allow pluggable vendor “drivers” for
accessing any database/data store

m Connector Architecture used to specity the
contract between JDO Vendor and Application
Server for instance, connection, and transaction

management

JDO Architecture

m Persistence By Reachability

= Any object loaded directly or indirectly (by reference)
from a JDO loaded object is automatically persisted
the enclosing transaction commits

Business Objects

>

Application

Transient Objects

Persistence Manager

Query
Transaction

describes

describes

g Data
Store

A

Class Meta Data

If

JDO Non-Managed Runtime

JOBC
JVM SQLA Driver
ersistence Manager
B (JDDF iste M
Gpp“ﬂﬂﬁﬂl‘l PR |1 Query . _
frsEsTen Ralati
: elational
4 ‘W JDO Instance |L_Transaction Datab
Tranfsj‘rt?m . 4 =1a35e
| Java Object /
[Transient |~ 4
| Jdva Objed e JDO Persistence Manager
[Transienl Bi5““* . I] Gy
A " -‘-""'lq.__ t-1r\nl £
b Java Coject 4 & JDO Inslance || Transaction
‘\ y

Persistent
Stores

Managed Environment

J2EE-based, multi-tier

m Lifetime of PM, pooling, and caching limited to
transaction scope

JO0 Vendar or
J00 vendar Other vendar

= iritte: JDO Specifications
Developer written ¢ f JOO vendors use either 4 f'
A A |
¢ / ‘1 | A i
/) | | y [JUDL OF Giner
u" J2EE Application Server | Mechanizm
3 \1{? : \(native fesource YU
| ' T

I 7
JDO
[hpn ication ccu:le ‘ <1:‘r} SP |mplemmamn
Adaptor-Container

synchronization \}
Container-Component ;
Connection Transactions confract

contract from J2EE ; :
specifications management (Resouce) (JCA-Specifications)

Byte Code Enhancement

= Most JDO vendors use the bytecode modification
for the following reasons:

m Avoid potentially messy source code modification

m Allow persistence to be hidden from the programmer.
The programmer 1s database unaware

| Source Flie |
- - P ey
| Enhanced
Class File] .
| Clazs Fila - JDO ——= Metadata -
Enhancer | s - e
| |

e %

JDO Interfaces and Classes

m Use PersistenceManagerFactory to get
a PersistenceManager

m PersistenceManager embodies a database
connection

m Use a PersistenceManager to create a
Transaction or a Query

m Use a Transaction to control
transaction boundaries

m Use a Query to find objects

JDO Interfaces and Classes (cont)

m Enhanced classes implicitly implement
PersistenceCapable

m PersistenceCapable classes can
implement InstanceCallbacks

Sun™
@ Sun
DE]PS mlcmsptems'

JDO Deployment Process

Source Code

(.java)
Java
Compile
\
creates
\/
Class Files Class Metadata
(.class) (metadata.jdo)
\J
Class
Enhancer
Enhances .class fileé
Enhanced Class Files Databases
(.class) (JDBC Connection)
! v
Uses Schema
| Builder
Application (with JDO API) |
(.java) Creates schemva
|
Database Tables
U
;es V (JDBC Connection)
e — Accesses

Implementation

JDO API For Persistence

Sun™
& Sun
DE}I’S mlcmsptems'

Public static void main(String[] args) {
PersistenceManagerFactory pmf =

JDOHelper .getPersistenceManagerFactory
(System.getProperties()) ;
PersistenceManager pm =

pmf . getPersistenceManager () ;
Transaction tx = pm.currentTransaction() ;
tx.begin() ;

Author author = new Author (“Mr. Author");

Book book = new Book ("Java Book",

"0-11-570731-7") ;
author.addBook (book) ;

// do some other work with books, publishers etc
pm.makePersistent (author) ;

tx.commit () ;
pm.close() ;

}

Hibernate

Hibernate (old)

m Persistence for JavaBeans

m Explicit Save/Update for each object

m Changed objects must be enlisted for update
so that the next transaction commit will
cffectuate the changes in the data store

m Support for very fine-grained, richly typed
object models

m Support for detached persistent objects
m Hibernate Query Language (HQL)

Hibernate

m Persistence for POJOs (JavaBeans)
m Flexible and mtutive mapping

m Explicit Save/Update for each object

m Changed objects must be enlisted for update
so that the next transaction commit will
cffectuate the changes in the data store

m Support for very fine-grained, richly typed
object models

m Support for detached persistent objects
m Hibernate Query Language (HQL)

Hibernate

m Persistence for POJOs (JavaBeans)
m Flexible and mtutive mapping

m Explicit Save/Update for each object

m Changed objects must be enlisted for update
so that the next transaction commit will
cffectuate the changes in the data store

m Support for very fine-grained, richly typed
object models

m Support for detached persistent objects
m Hibernate Query Language (HQL)

Detached Object Support

m For applications using servlets + session
beans

m Row “select” not needed for updating

m DTO's not necessary

® You may serialize objects to the web tier,
then serialize them back to the EJB tier in
the next request

m Hibernate lets you selectively reassociate a
subgraph

m Performance advantage

Complementing
J2EE and

JDO/Hibernate

JDO In Transaction-Managed Environment QSzgn

m Because JDO 1s only concerned with
persistence, 1t 1s best used within protective
boundaries of a J2EE application server

JDO Access Scheme

// factory wvia JNDI
PersistenceManagerFactory pmf = ...;

// Create a session-scoped persistence manager
PersistenceManager sess =
pmf . getPersistenceManager () ;

// Get object
Person p = (Person)
sess.getObjectBylId (new PersonPK(“100170")) ;

// Set/Get properties as for any POJO
p.setName (“"Peter Jensen”) ;
int year = p.getYearOfBirth() ;

Hibernate In Transaction-Managed
Environment

Sun™
& Sun
DE}PS n11r_msyst!ms'

Hibernate Access Scheme

// factory wvia JNDI
SessionFactory sessionFactory = ...;

// Create a session-scoped persistence manager
Session sess =
sessionFactory.getSession() ;

// Get object
Person p = (Person)
sess.loadClass (Person.class, “100170”) ;

// Set/Get properties as for any POJO
p.setName (“"Peter Jensen”) ;
int year = p.getYearOfBirth() ;

sess.saveOrUpdate (p) ;

JDO and EJB

= JDO works well with Session and
Message-Driven Beans

m Works out-of-the-box

m Bean explicitly controls transactions or uses
CMT

® JDO can be used with BMP Entity
Beans

® JDO can be used by containers for CMP

JDO and EJB

m Usage with Session, Message-Driven Bean

m Fascade pattern

m Bean methods represent coarse-grained
business processes

® Business logic uses JDO to represent the data
model

m Bean programming can still leverage
standard OO concepts

= JDO object can be used 1n Data Transfer
Object Pattern

JDO and Stateless Session Beans [

public class ExampleCMTBeanWithJDO implements SessionBean {
private SessionContext ejbCtx;

private PersistenceManagerFactory jdoPMF;

public void setSessionContext (SessionContext sessionCtx) throws
EJBException({

ejbCtx = sessionCtx;
InitialContext ctx = new InitialContext|() ;
Object o = ctx.lookup("java:comp/env/jdo/bookstorePMF") ;

jdoPMF = (PersistenceManagerFactory)
PortableRemoteObject.narrow
(o, PersistenceManagerFactory.class);...}

/* business method */

public void doSomething (int arg) {
PersistenceManager pm = jdoPMF.getPersistenceManager () ;

// Do something using JDO now. ..

pm.close() ;

} }

JDO and EJB

m JDO can be used as a BMP strategy
® Sun Java System App Server uses JDO for CMP
m [everages J2CA

m Layered Architecture
m Use JDO objects directly

m Use same objects within EJB to take advantage of
other J2EE container services

= JDO/BMP approach — cost effective

m Entity Bean and JDO usage similiarities

m Not distributed, non-remote, not access-controlled

JDO and EJB

m Entity Beans Wrapping JDO classes

m Use a BMP delegate strategy

m Allows the JDO classes to be remotely
accessible directly, rather than through a
session facade

JDO and J2CA

m Java Connector Architecture

= Mandated as plug-in for non-JDBC data access
m Common Client Interface

m Standard APIs for obtaining a connection

B javax.resource.ccl.ConnectionFactory

B javax.resource.ccl.Connection

m PersistenceManagerFactory ->
ConnectionFactory

m PersistenceManager —-> Connection

= JDO PMF 1s bound to JNDI by a J2CA
adaptor

Access From Application Clients Directly B&

...For Better Performance

dsmewes/

wnNJo4 auljuQ

dsrnelmes/

J9yoig Y001
dr3 spede-

Joyolg o01s

Web Container EJB Container
JDO Implementation JDO Implementation

® Techniques for concurrency modifications

m JDO — Store PersistenceManager in HTTP Session
m Hibernate — Store Data Objects in HTTP Session

JDO and Servlets

public class JDOServlet extends HttpServlet{

PersistenceManagerFactory pmf;

public void init(ServletConfig config);
InitialContext ctx = new InitialContext();
pmf = (PersistenceManagerFactory)
ctx.lookup (“java:comp/env/PMF”) ;}

protected void service (HttpServletRequest request,
HttpServletResponse response) {

String authorname = request.getParameter ("authorname") ;
PersistenceManager pm = pmf.getPersistenceManager () ;
Transaction tx = pm.currentTransaction() ;

tx.begin() ;

Author author = new Author ("authorname'") ;pm.makePersistent
(author) ;

tx.commit () ;

}

Choosing Your
Strategy

JDBC

Application Suitability

m Moderate development cycle

= No itermediate step needed

m Dependence on SQL to handle
computational logic

m [deal for RDBMS-centric apps

= Harness RDBMS computational power

m Tight coupling — domain object models
and database schema

JDBC

Application Suitability

m Lack of client caching

m Moderately portable code

JDBC

Object Query
m Uses SQL

m Refers directly to the data store schema

m Query sent directly to the data store as
String arguments

m No statement error detection at
compile time

m Excel at Aggregational Queries
= Computational load on the RDBMS

JDBC

Object Query

m Driver explicitly fetches records from
the data source for Navigational
queries

® Ad-hoc results possible

® Query results returned as ResultSet

m High overhead for marshalling query
results

CMP

Application Suitability

m Application server has rich feature set

m [oad balancing, transactions, security,
messaging, etc

m High performance optimization
m Fetch-on-demand

m Highly portable code
m BMP less so

m Development can be non-linear

CMP

Object Query
m Declarative query using abstract finder
methods 1n bean interface

m Deployment descriptor defines how
the finder 1s realized in EJB-QL

m Compiler translates EJB-QL query to
syntax of target data store

= Compiler mnserts execution statements
into generated concrete bean class

CMP

Object Query

m [deal for Navigation Query

® Driver implicitly fetches instances from the data
source

® Domain object model decoupled from
schema and data store

m Cannot assume specific query capabilities of the
data store

m Ad-hoc queries not possible

CMP

Object Query

® Query results returned as domain objects
m Low overhead for marshalling query results

m Provides advanced declarative transaction
semantics

m EJB-QL Definition 1in Server-side
descriptors

m No Access to Statement Generation

= Simplicity in Database Mapping

JDO

Application Suitability

m Application code relatively simple

m JDO driver handles automatic persistence,
mapping, and 1dentification in transactions

m Ideal for object-centric applications

m Ideal when data store 1s primarily
navigational

= Object methods handle bulk of data store
computational logic

JDO

Application Suitability

m [deal when working with multiple types
of data stores

m [deal for navigation access over a graph
of interconnected objects

m Persistence-by-reachability
m Moderate performance optimization

m Client cache managed by JDO
implementation

m Highly portable code

JDO

Object Query

® Programmatic approach using Java-like
syntax

® Query represented as instance of
javax.jdo.Query object

= Attributes refer only to elements 1n the
Java application space

m JDO driver translates query into syntax
of target data store when execute()
method invoked on Query object

JDO

Object Query
m JDO-QL used

= Computational load on the client

m [deal for Navigation Query

® Driver implicitly fetches instances from
the data source

® Domain object model decoupled from
schema and data store

m Cannot assume specific query capabilities
of the data store

JDO

Object Query

m Ad-hoc Queries possible
® Query results returned as domain
objects

m Low overhead for marshalling query
results

m Persistence-by-reachability enable
strong transaction state management

L Sun

microsystems

Push your
development
further

EJB 3.0 Goals for CMP

= Simplify Programming Model
m Reduce number of programming artifacts

m POJO/JavaBeans like other EJB 3.0 beans

m Eliminate deployment descriptor from
developer’s view

m Make instances usable outside the container

m Facilitate testability

m Remove need for data transfer objects
(DTOs)

EJB 3.0 Goals for CMP

m Support for lightweight domain modeling
® Inheritance and polymorphism
= Object/Relational mapping metadata

m More complete query capabilities

EJB 2.0 Persistent Model

m Enables light-weight implementation

m Entities typically accessed through local interfaces
m Transactions typically started in session bean or Web
tier
m Methods are often “unchecked”
® Provides a standardized SQL-like query language
integrated with entity model EJB-QL

m Usage has supplanted that of BMP

m Held back by need for more EJB-QL

m High-quality, high-performance implementations well-
established 1n industry

EJB Limitations

m Lack of sufficient modeling capabilities
= No polymorphism
® No support for implementation inheritance
m Lacks O/R mapping specification

® Query language still missing some important
features

m Projection, Subqueries, Outer joins, Dynamic
queries

® Provision for direct SQL queries

POJO Entity Beans 0

m Concrete classes (no longer abstract)

m No required bean interfaces
® Support new()

m Usable outside the EJB container
m As detached entities
m For testing of business logic

m getter/setter methods

m Can contain logic (for validation, transformation,
etc.)

POJO Entity Beans

m Collection interfaces for relationships
m Entities are not remotable
® No required callback interfaces

= Many points of control
m Over lifecycle
m CASCADE capabilities (CREATE, REMOVE, ALL, ...)
m Scope of persistence context

m Fetch/faulting behavior
= FETCH JOINS, O/R mapping metadata

®m [solation semantics

EJB 3.0 Entity Bean Example

@Entity public class Customer ({
private Long id;
private String name;
private Address address;
private HashSet orders = new HashSet()

@Id (generate=AUTO) public Long getID() {
return id;

}

protected void setID (Long id) {
this.id = id;
}

@OneToMany (cascade=ALL)

public Set<Order> getOrders () {
return orders;

}

public void setOrders (Set<Order> orders) {
this.orders = orders;

b}

EJB 3.0 Client Example

Sun™
& Sun
DE}I’S mlcmsptems'

@Stateless public class OrderEntryBean {
private EntityManager em;

@Inject void setEntityManager (EntityManager em) {
this.em = em;

}

public void enterOrder (int custID, Order newOrder) {
Customer ¢ = em.find(“"Customer”, custID);
c.getOrders () .add (newOrder) ;
newOrder.setCustomer (c) ;

}

// other business methods

}

EJB QL Enhancements

m Bulk update and delete operations
® Projection list (SELECT clause)
= Group by, Having

m Subqueries (correlated and not)

m Additional SQL functions
m UPPER, LOWER, TRIM, CURRENT DATE, ...

®= Dynamic queries

m Polymorphic queries

m Criteria queries probably 1n 3.1

Persistence Context and Metadata
Access Updates

m Outer Fetch Joins
m Very useful for explicitly controlling data prefetch

® Minimize database roundtrips

® Programmer knows data access patterns
m Relationship fetching

m FetchType, EAGER, LAZY
m Optimustic locking support

m (wVersion, (@Timestamp

Inheritance Mapping Example Bz

@Entity
@Table (name="CUST")
@Inheritance (strategy=SINGLE TABLE,

discriminatorType=STRING,

discriminatorValue="CUST”)
public class Customer {...}

@Entity

@Inheritance (discriminatorValue="VCUST")
public class ValuedCustomer extends Customer({...}

Extended Persistence Context

m Persistence context typically corresponds to
a single JTA transaction

m Extended persistence context can span
multiple JTA transactions
® Important use case: “Application transactions”

m Preserves state across longer-lived client
interactions (especially from Web tier)

m Stateful session beans a natural fit for
maintaining extended persistence context

m Optimistic transactions

Resources

m J2EE
m http://java.sun.com/j2ee/index.jsp
= JDO

http://access1.sun.com/jdo/

http://www.jdocentral.com

m Hibernate

® http://www.hibernate.org

= OJB
m http://db.apache.org/ojb/

L Sun

microsystems

Push your
development
further

Sridhar Reddy

sridhar.reddy@sun.com

Sun™ Tech Days

Demo

CMP Development on

Sun Java Studio
Enterprise

