
Push your development further
Sun™
Tech
Days

J2EE Persistence Options:
JDO, Hibernate and EJB 3.0

Sridhar Reddy
Sridhar.Reddy@sun.com

Sun™ Tech Days

Push your development further
Sun™
Tech
Days

The Landscape

Push your development further
Sun™
Tech
DaysPersistence In A Nut Shell

 Persistence
 Saving your (persistent) application data
 Mapping your component/object model to the

persistence store (typically referred to as O/R
mapping)

 Data consistency and concurrent access
 Transactional semantics
 Managing your persistent state is non-trivial

and complex

Push your development further
Sun™
Tech
Days

Object-Relational Impedance Mismatch

Customer
Profile

Item

Order Order Order

Item

Item
Item

Item

The Logical World

The Physical World

Push your development further
Sun™
Tech
DaysPersistence Techniques

 Entity EJB
 Bean-Managed Persistence (BMP)
 Container-Managed Persistence (CMP)

 JDBC
 Relational databases (RDBMS)
 Object databases (ODBMS)

 Java Data Objects (JDO)
 Hibernate
 ObjectRelationalBridge (OJB)

Push your development further
Sun™
Tech
DaysApproaches to Object Persistence

Functional Approach

 Better suited for coarse-grained
persistent business objects
 Class author or tool implement a

standard set of functions to persistent-
enable their domain classes
 Two models programmatically reflect

the same domain
 Ex: Entity Bean persistence

framework

Push your development further
Sun™
Tech
DaysApproaches to Object Persistence

Orthogonal Language Transparent Approach

 Suited for both coarse-grained and fine-
grained persistent domain objects
 Persistent objects in the code are just like

any other objects
 Application design decoupled and

independent of the underlying persistence
infrastructure
 Ex: JDO persistence framework, Hibernate

Push your development further
Sun™
Tech
DaysCan The Two Co-exist?

 YES!
 Transparent persistence with Java Data

Objects (JDO), Hibernate, and others
are not replacements for Enterprise
JavaBeans (EJB) architecture
 They complement it!

Push your development further
Sun™
Tech
Days

Container-Managed
Persistence

(CMP)

Push your development further
Sun™
Tech
DaysCMP 2.0

 Rich modeling capability with relationships

 Referential integrity, Cardinality, Cascading
delete

 Container manages the relationships not you!

 Freedom from maintaining interactions with the
data store

 EJB Query Language (EJB-QL)

 Truly portable code!

Push your development further
Sun™
Tech
DaysBMP vs. CMP

CMP
Bean

EJB Container

BMP
Bean

EJB Container

JDBC
Driver

JDBC
SQLJ

SQL

JDBC
Driver

SQL

Persistence
Manager

Bean
State

Database

Bean
State

Database

Bean
State

Database

Bean
State

Database

JDBC

SQLJ

1) Bean provider manages State and Data consistency

2) Bean provider handles relationships and OR Mapping

1) Container manages State and Data consistency

2) Container/PM provides concurrency, relationships and OR Mapping

Push your development further
Sun™
Tech
DaysRole of the Persistence Mgr

 O/R mapping
 Managing the persistence state

 Relationships management

 Concrete bean sub-class generation

 QoS (e.g., Data caching)

Push your development further
Sun™
Tech
DaysRoles of the Container

 Basic “wrapper” code generation

 Making the info from ejb-jar.xml
available to the PM during deployment

 Life cycle management
 Making the Transaction Manager

available to the PM

Push your development further
Sun™
Tech
DaysCMP 2.0

 Use CMP 2.0 whenever possible!

 Performs better than BMP

 Improved portability, performance over CMP 1.0

 Easier to develop and deploy than BMP

 Produces portable code over multiple databases

 If you have to build BMP entity bean, subclass
CMP 2.0 bean
 Easy migration to CMP later on

Push your development further
Sun™
Tech
Days

Java Data Objects
(JDO)

Push your development further
Sun™
Tech
DaysJDO

 Standard for generic/transparent Java object
persistence
 Provides developers with a Java-centric and

object view of persistence and data store access

 Designed to allow pluggable vendor “drivers” for
accessing any database/data store

 Connector Architecture used to specify the
contract between JDO Vendor and Application
Server for instance, connection, and transaction
management

Push your development further
Sun™
Tech
DaysJDO Architecture

Application

Transient Objects

JDO Objects
(implement

Persistence Capable)

Query

Transaction

Class Meta Data

Data
Store

Business Objects

Persistence Manager

describes

describes

 Persistence By Reachability
 Any object loaded directly or indirectly (by reference)

from a JDO loaded object is automatically persisted if
the enclosing transaction commits

Push your development further
Sun™
Tech
DaysJDO Non-Managed Runtime

Push your development further
Sun™
Tech
DaysManaged Environment

 Lifetime of PM, pooling, and caching limited to
transaction scope

J2EE-based, multi-tier

Push your development further
Sun™
Tech
Days

 Most JDO vendors use the bytecode modification
for the following reasons:
 Avoid potentially messy source code modification

 Allow persistence to be hidden from the programmer.
 The programmer is database unaware

Byte Code Enhancement

Push your development further
Sun™
Tech
DaysJDO Interfaces and Classes

 Use PersistenceManagerFactory to get
a PersistenceManager
 PersistenceManager embodies a database

connection

 Use a PersistenceManager to create a
Transaction or a Query
 Use a Transaction to control

transaction boundaries

 Use a Query to find objects

Push your development further
Sun™
Tech
DaysJDO Interfaces and Classes (cont)

 Enhanced classes implicitly implement
PersistenceCapable
 PersistenceCapable classes can

implement InstanceCallbacks

Push your development further
Sun™
Tech
DaysJDO Deployment Process

Source Code
(.java)

Java
Compile

Class Files
(.class)

Class Metadata
(metadata.jdo)

Class
Enhancer

Enhanced Class Files
(.class)

Databases
(JDBC Connection)

Schema
Builder

Application (with JDO API)
(.java)

Database Tables
(JDBC Connection)

JDO
Implementation

creates

Enhances .class files

Creates schema

Accesses

Uses

Uses

Push your development further
Sun™
Tech
DaysJDO API For Persistence

Public static void main(String[] args) {
PersistenceManagerFactory pmf =

JDOHelper.getPersistenceManagerFactory
(System.getProperties());
PersistenceManager pm =

pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();
tx.begin();
 Author author = new Author(“Mr. Author");
 Book book = new Book("Java Book",

"0-11-570731-7");
 author.addBook(book);

// do some other work with books, publishers etc
 pm.makePersistent(author);

tx.commit();
pm.close();
}

Push your development further
Sun™
Tech
Days

Hibernate

Push your development further
Sun™
Tech
DaysHibernate (old)

 Persistence for JavaBeans

 Explicit Save/Update for each object
 Changed objects must be enlisted for update

so that the next transaction commit will
effectuate the changes in the data store

 Support for very fine-grained, richly typed
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)

Push your development further
Sun™
Tech
DaysHibernate

 Persistence for POJOs (JavaBeans)

 Flexible and intutive mapping

 Explicit Save/Update for each object
 Changed objects must be enlisted for update

so that the next transaction commit will
effectuate the changes in the data store

 Support for very fine-grained, richly typed
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)

Push your development further
Sun™
Tech
DaysHibernate

 Persistence for POJOs (JavaBeans)

 Flexible and intutive mapping

 Explicit Save/Update for each object
 Changed objects must be enlisted for update

so that the next transaction commit will
effectuate the changes in the data store

 Support for very fine-grained, richly typed
object models

 Support for detached persistent objects

 Hibernate Query Language (HQL)

Push your development further
Sun™
Tech
DaysDetached Object Support

 For applications using servlets + session
beans
 Row “select” not needed for updating

 DTO's not necessary

 You may serialize objects to the web tier,
then serialize them back to the EJB tier in
the next request

 Hibernate lets you selectively reassociate a
subgraph
 Performance advantage

Push your development further
Sun™
Tech
Days

Complementing
J2EE and
JDO/Hibernate

Push your development further
Sun™
Tech
Days

JDO In Transaction-Managed Environment

 Because JDO is only concerned with
persistence, it is best used within protective
boundaries of a J2EE application server

JDO Access Scheme

// factory via JNDI
PersistenceManagerFactory pmf = ...;

// Create a session-scoped persistence manager
PersistenceManager sess =

pmf.getPersistenceManager();

// Get object
Person p = (Person)

sess.getObjectById(new PersonPK(“100170”));

// Set/Get properties as for any POJO
p.setName(“Peter Jensen”);
int year = p.getYearOfBirth();

Push your development further
Sun™
Tech
Days

Hibernate In Transaction-Managed
Environment

Hibernate Access Scheme

// factory via JNDI
SessionFactory sessionFactory = ...;

// Create a session-scoped persistence manager
Session sess =

sessionFactory.getSession();

// Get object
Person p = (Person)

sess.loadClass(Person.class, “100170”);

// Set/Get properties as for any POJO
p.setName(“Peter Jensen”);
int year = p.getYearOfBirth();

sess.saveOrUpdate(p);

Push your development further
Sun™
Tech
DaysJDO and EJB

 JDO works well with Session and
Message-Driven Beans
 Works out-of-the-box
 Bean explicitly controls transactions or uses

CMT

 JDO can be used with BMP Entity
Beans

 JDO can be used by containers for CMP

Push your development further
Sun™
Tech
DaysJDO and EJB

 Usage with Session, Message-Driven Bean
 Fascade pattern

 Bean methods represent coarse-grained
business processes
 Business logic uses JDO to represent the data

model

 Bean programming can still leverage
standard OO concepts
 JDO object can be used in Data Transfer

Object Pattern

Push your development further
Sun™
Tech
DaysJDO and Stateless Session Beans

public class ExampleCMTBeanWithJDO implements SessionBean{
private SessionContext ejbCtx;
private PersistenceManagerFactory jdoPMF;

public void setSessionContext(SessionContext sessionCtx) throws
EJBException{
ejbCtx = sessionCtx;
InitialContext ctx = new InitialContext();
Object o = ctx.lookup("java:comp/env/jdo/bookstorePMF");
jdoPMF = (PersistenceManagerFactory)
PortableRemoteObject.narrow
 (o,PersistenceManagerFactory.class);...}

 /* business method */

 public void doSomething(int arg){
 PersistenceManager pm = jdoPMF.getPersistenceManager();

 // Do something using JDO now...

pm.close();

} }

Push your development further
Sun™
Tech
DaysJDO and EJB

 JDO can be used as a BMP strategy
 Sun Java System App Server uses JDO for CMP

 Leverages J2CA

 Layered Architecture
 Use JDO objects directly

 Use same objects within EJB to take advantage of
other J2EE container services

 JDO/BMP approach – cost effective

 Entity Bean and JDO usage similiarities
 Not distributed, non-remote, not access-controlled

Push your development further
Sun™
Tech
DaysJDO and EJB

 Entity Beans Wrapping JDO classes
 Use a BMP delegate strategy
 Allows the JDO classes to be remotely

accessible directly, rather than through a
session facade

Push your development further
Sun™
Tech
DaysJDO and J2CA

 Java Connector Architecture
 Mandated as plug-in for non-JDBC data access

 Common Client Interface
 Standard APIs for obtaining a connection
 javax.resource.cci.ConnectionFactory

 javax.resource.cci.Connection

 PersistenceManagerFactory ->
ConnectionFactory

 PersistenceManager -> Connection

 JDO PMF is bound to JNDI by a J2CA
adaptor

Push your development further
Sun™
Tech
DaysAccess From Application Clients Directly

EJB ContainerEJB Container

JDO ImplementationJDO Implementation

Web ContainerWeb Container

JDO ImplementationJDO Implementation

O
nline

 F
orum

S
ervlet/JS

P
O

nline
 F

orum
S

ervlet/JS
P

S
tock B

ro
ker

S
ervlet/JS

P
S

tock B
ro

ker
S

ervlet/JS
P

S
tock B

ro
ker

F
açad

e E
JB

S
tock B

ro
ker

F
açad

e E
JB

 Techniques for concurrency modifications
 JDO – Store PersistenceManager in HTTP Session

 Hibernate – Store Data Objects in HTTP Session

…For Better Performance

Push your development further
Sun™
Tech
DaysJDO and Servlets

public class JDOServlet extends HttpServlet{

PersistenceManagerFactory pmf;
public void init(ServletConfig config);
InitialContext ctx = new InitialContext();
pmf = (PersistenceManagerFactory)
ctx.lookup(“java:comp/env/PMF”);}

protected void service(HttpServletRequest request,
 HttpServletResponse response){

String authorname = request.getParameter("authorname");
PersistenceManager pm = pmf.getPersistenceManager();
Transaction tx = pm.currentTransaction();
tx.begin();

Author author = new Author("authorname");pm.makePersistent
(author);

tx.commit();

}

Push your development further
Sun™
Tech
Days

Choosing Your
Strategy

Push your development further
Sun™
Tech
DaysJDBC

 Moderate development cycle
 No intermediate step needed

 Dependence on SQL to handle
computational logic
 Ideal for RDBMS-centric apps
 Harness RDBMS computational power
 Tight coupling – domain object models

and database schema

Application Suitability

Push your development further
Sun™
Tech
DaysJDBC

 Lack of client caching
 Moderately portable code

Application Suitability

Push your development further
Sun™
Tech
DaysJDBC

 Uses SQL
 Refers directly to the data store schema

 Query sent directly to the data store as
String arguments
 No statement error detection at

compile time
 Excel at Aggregational Queries

 Computational load on the RDBMS

Object Query

Push your development further
Sun™
Tech
DaysJDBC

 Driver explicitly fetches records from
the data source for Navigational
queries
 Ad-hoc results possible
 Query results returned as ResultSet
 High overhead for marshalling query

results

Object Query

Push your development further
Sun™
Tech
DaysCMP

 Application server has rich feature set
 Load balancing, transactions, security,

messaging, etc

 High performance optimization

 Fetch-on-demand
 Highly portable code
 BMP less so

 Development can be non-linear

Application Suitability

Push your development further
Sun™
Tech
DaysCMP

 Declarative query using abstract finder
methods in bean interface
 Deployment descriptor defines how

the finder is realized in EJB-QL
 Compiler translates EJB-QL query to

syntax of target data store

 Compiler inserts execution statements
into generated concrete bean class

Object Query

Push your development further
Sun™
Tech
DaysCMP

 Ideal for Navigation Query
 Driver implicitly fetches instances from the data

source

 Domain object model decoupled from
schema and data store
 Cannot assume specific query capabilities of the

data store

 Ad-hoc queries not possible

Object Query

Push your development further
Sun™
Tech
DaysCMP

 Query results returned as domain objects
 Low overhead for marshalling query results

 Provides advanced declarative transaction
semantics
 EJB-QL Definition in Server-side

descriptors
 No Access to Statement Generation

 Simplicity in Database Mapping

Object Query

Push your development further
Sun™
Tech
DaysJDO

 Application code relatively simple
 JDO driver handles automatic persistence,

mapping, and identification in transactions

 Ideal for object-centric applications
 Ideal when data store is primarily

navigational
 Object methods handle bulk of data store

computational logic

Application Suitability

Push your development further
Sun™
Tech
DaysJDO

 Ideal when working with multiple types
of data stores

 Ideal for navigation access over a graph
of interconnected objects
 Persistence-by-reachability

 Moderate performance optimization
 Client cache managed by JDO

implementation

 Highly portable code

Application Suitability

Push your development further
Sun™
Tech
DaysJDO

 Programmatic approach using Java-like
syntax
 Query represented as instance of

javax.jdo.Query object
 Attributes refer only to elements in the

Java application space
 JDO driver translates query into syntax

of target data store when execute()
method invoked on Query object

Object Query

Push your development further
Sun™
Tech
DaysJDO

 JDO-QL used
 Computational load on the client
 Ideal for Navigation Query
 Driver implicitly fetches instances from

the data source

 Domain object model decoupled from
schema and data store
 Cannot assume specific query capabilities

of the data store

Object Query

Push your development further
Sun™
Tech
DaysJDO

 Ad-hoc Queries possible
 Query results returned as domain

objects
 Low overhead for marshalling query

results

 Persistence-by-reachability enable
strong transaction state management

Object Query

Push your development further
Sun™
Tech
Days

EJB 3.0

Push your development further
Sun™
Tech
DaysEJB 3.0 Goals for CMP

 Simplify Programming Model
 Reduce number of programming artifacts
 POJO/JavaBeans like other EJB 3.0 beans
 Eliminate deployment descriptor from

developer’s view
 Make instances usable outside the container
 Facilitate testability
 Remove need for data transfer objects

(DTOs)

Push your development further
Sun™
Tech
DaysEJB 3.0 Goals for CMP

 Support for lightweight domain modeling
 Inheritance and polymorphism
 Object/Relational mapping metadata

 More complete query capabilities

Push your development further
Sun™
Tech
DaysEJB 2.0 Persistent Model

 Enables light-weight implementation
 Entities typically accessed through local interfaces
 Transactions typically started in session bean or Web

tier
 Methods are often “unchecked”

 Provides a standardized SQL-like query language
integrated with entity model EJB-QL

 Usage has supplanted that of BMP
 Held back by need for more EJB-QL
 High-quality, high-performance implementations well-

established in industry

Push your development further
Sun™
Tech
DaysEJB Limitations

 Lack of sufficient modeling capabilities
 No polymorphism
 No support for implementation inheritance
 Lacks O/R mapping specification

 Query language still missing some important
features
 Projection, Subqueries, Outer joins, Dynamic

queries
 Provision for direct SQL queries

Push your development further
Sun™
Tech
DaysPOJO Entity Beans

 Concrete classes (no longer abstract)
 No required bean interfaces
 Support new()

 Usable outside the EJB container
 As detached entities
 For testing of business logic

 getter/setter methods
 Can contain logic (for validation, transformation,

etc.)

Push your development further
Sun™
Tech
DaysPOJO Entity Beans

 Collection interfaces for relationships
 Entities are not remotable
 No required callback interfaces
 Many points of control
 Over lifecycle
 CASCADE capabilities (CREATE, REMOVE, ALL, ...)

 Scope of persistence context
 Fetch/faulting behavior
 FETCH JOINS, O/R mapping metadata

 Isolation semantics

Push your development further
Sun™
Tech
Days

EJB 3.0 Entity Bean Example
 @Entity public class Customer {

private Long id;
private String name;
private Address address;
private HashSet orders = new HashSet();

@Id(generate=AUTO) public Long getID() {
 return id;
}

 protected void setID (Long id) {
 this.id = id;

}

@OneToMany(cascade=ALL)
public Set<Order> getOrders() {
 return orders;
}

public void setOrders(Set<Order> orders) {
 this.orders = orders;
}}

Push your development further
Sun™
Tech
Days EJB 3.0 Client Example

 @Stateless public class OrderEntryBean {
private EntityManager em;

@Inject void setEntityManager(EntityManager em){
 this.em = em;
}

public void enterOrder(int custID, Order newOrder){
 Customer c = em.find(“Customer”, custID);
 c.getOrders().add(newOrder);
 newOrder.setCustomer(c);
 }

// other business methods
}

Push your development further
Sun™
Tech
Days EJB QL Enhancements

 Bulk update and delete operations

 Projection list (SELECT clause)

 Group by, Having

 Subqueries (correlated and not)

 Additional SQL functions
 UPPER, LOWER, TRIM, CURRENT_DATE, ...

 Dynamic queries

 Polymorphic queries

 Criteria queries probably in 3.1

Push your development further
Sun™
Tech
DaysPersistence Context and Metadata

Access Updates

 Outer Fetch Joins
 Very useful for explicitly controlling data prefetch

 Minimize database roundtrips

 Programmer knows data access patterns

 Relationship fetching
 FetchType, EAGER, LAZY

 Optimistic locking support
 @Version, @Timestamp

Push your development further
Sun™
Tech
Days Inheritance Mapping Example

@Entity
@Table(name=”CUST”)
@Inheritance(strategy=SINGLE_TABLE,
 discriminatorType=STRING,
 discriminatorValue=”CUST”)
public class Customer {...}

@Entity
@Inheritance(discriminatorValue=”VCUST”)
public class ValuedCustomer extends Customer{...}

Push your development further
Sun™
Tech
Days Extended Persistence Context

 Persistence context typically corresponds to
a single JTA transaction
 Extended persistence context can span

multiple JTA transactions
 Important use case: “Application transactions”
 Preserves state across longer-lived client

interactions (especially from Web tier)
 Stateful session beans a natural fit for

maintaining extended persistence context
 Optimistic transactions

Push your development further
Sun™
Tech
Days Resources

 J2EE
 http://java.sun.com/j2ee/index.jsp

 JDO
 http://access1.sun.com/jdo/
 http://www.jdocentral.com

 Hibernate
 http://www.hibernate.org

 OJB
 http://db.apache.org/ojb/

Push your development further
Sun™
Tech
Days

Q&A

Push your development further
Sun™
Tech
Days

Sridhar Reddy

sridhar.reddy@sun.com

Sun™ Tech Days

Push your development further
Sun™
Tech
Days

Demo
 CMP Development on

Sun Java Studio
Enterprise

